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1. I n t r o d u c t i o n  

T h e  m i n i m i z a t i o n  of  p o t e n t i a l  energy func t ions  p lays  an i m p o r t a n t  role in the  de- 
t e r m i n a t i o n  of  g round  s t a tes  or s t ab le  s ta tes  of cer ta in  classes of  mo lecu l a r  clusters  
and  pro te ins .  Since, in a lmos t  all the  cases, the  po t en t i a l  energy func t ion  is non-  
convex and  therefore  has  m a n y  local  min imizers ,  the  m i n i m i z a t i o n  of the  p o t e n t i a l  
energy func t ion  is a very ha rd  p rob l em.  

For  m a n y  years,  th is  has  been a field of  Chemis t s  and  Physic is ts .  In  recent  years ,  
however,  m a n y  researchers  f rom O p t i m i z a t i o n  and  C o m p u t e r  Science have pa id  
close a t t e n t i o n  to th is  p rob l em.  The i r  in teres t  in th is  p r o b l e m  is two-fold.  Fi rs t ly ,  
t hey  f ind t h a t  mos t  of these p o t e n t i a l  energy m i n i m i z a t i o n  p rob l ems  are  idea l  as test  
p r o b l e m s  for g loba l  m i n i m i z a t i o n  a lgo r i thms .  Second,  wi th  the  advanced  techniques  
in o p t i m i z a t i o n  a l g o r i t h m s  and  the  use of  mass ive ly  pa ra l l e l  compute r s ,  t hey  can, 
for cer ta in  ins tances ,  f ind lower energy s t a tes  for some of  the  well s tud ied  p rob lems .  
The  m i n i m i z a t i o n  of  nonconvex  p o t e n t i a l  energy func t ions  ar is ing f rom molecu la r  
con fo rma t ion  or p ro t e in  fo ld ing  p r o b l e m s  has  become one of  the  mos t  i m p o r t a n t  
p r o b l e m s  for i n t e rd i sc ip l ina ry  research [8, 57, 24]. I t  should  be  no ted  t h a t  this  is a 
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very hard problem. Current methods are limited by the problem size since, when 
the cluster size grows, the number of local minimizers often grows exponentially. 
The problem requires intensive computing time, ranging from weeks to months of 
CPU time on a Cray supercomputer even for a middle sized problem. 

In this paper, we will introduce some of the most commonly used potential energy 
functions and describe most of the approaches taken to tackle the minimization 
problem. A very complete reference list is also provided at the end of the paper. 

2. P o t e n t i a l  E n e r g y  F u n c t i o n s  

In this section, we describe some of the most commonly used potential energy 
functions and address some of their properties. 

Of the many cases of interest, the simplest is that of two-body central forces 
between the component atoms. Although this potential energy function does not 
actually model the real system in many cases - ignoring angle dependent conditions, 
bond constraints, and dihedral angle conditions - it provides a useful prototype that  
enormously simplifies the design of computer programs. 

Given a cluster of N atoms in 3-dimensional  space, the potential energy function 
of the cluster is defined as the summation (over all of the pairs) of the two-body 
interatomic pair potentials. Let the center of the N atoms be a l , . . ' ,  aN. The 
potential energy function is defined as follows. 

V~(a~,.--,.~)= Z "(lla~-"jll), (1) 
l<i<j~_N 

where II" II is the Euclidean norm and v(r) is the interatomic pair potential. 
Although many types of function v(r) may be used in physical models, it is 

necessary to apply some restrictions if we want v(r) to have satisfactory behavior. 
In general, we would like v(r) to be continuous at least down to a hard core rmi~ 
and to possess derivatives up to the second order over the interval (rmi,~, c<)). More 
specifically, we are only interested in cases where v(r) is a well potential satisfying 
the following conditions: 

cl.  v(r) ~ 0-  as r -* c~; 
c2. v(r) --~ co as r --* r,~i,~ and r,~in ~_ 0; 
c3. v~(ro) = 0 for a unique r0 with rmin "< ro < co; 
c4. v"(ro) > 0 and v(ro) < O. 

Pair potentials of interest in clusters include the following [19, 26]: 

pl.v(r) --- (n  - m ) - l [ m r  - n  - n r - m ] ,  (n  > m )  (Mie) 
p 2 . v ( r )  = r - 1 2  - 2r  - 6  ( L e n n a r d - J o n e s )  

p 3 . v ( r )  = [1 - e a ( 1 - r ) ]  2 - 1 ( M o r s e )  

p 4 . v ~ ( r )  ---- zaz~ / r  + Ae -r/p ( B o r n - M e y e r )  
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From the above conditions, we can easily see that the potential energy function 
is continuous and always has a global minimizer with a minimum energy function 
value less than zero. 

From condition cl, it is also clear that the interatomic force is very small when 
two atoms are far away from each other. Therefore short range potential energy 
functions can be introduced where the interatomic potential is defined to be zero 
if the distance between two atoms is greater than rma~. Although simple as it 
sounds, the idea of a short range potential is very important,  for in most cases, 
when the cluster size is very large, an atom only interacts with a very small portion 
of the whole cluster. Therefore a lot of time is wasted in computing the full range 
potential. For this reason, there have been many techniques developed for the fast 
computation of short range potential energy functions. 

3. O p t i m i z a t i o n  M e t h o d s  

In this section, we will discuss many of the optimization methods used in previous 
studies to minimize the potential energy functions. These methods are grouped in 
several subsections in the sequel. For general global optimization algorithms, we 
refer readers to the two classical references [29] and [51]. 

3.1. L a t t i c e  B a s e d  S e a r c h  

The difficulty of the Lennard-Jones cluster problem arises from the fact that  it is 
a global optimization problem with an exponential number of local minima [26]. 
It is axiomatic that the solution of a global optimization problem, or multiple- 
minima problem, will be improved by any physical understanding of the problem 
which serves to restrict the search space, or domain, which contains the global 
solution. In the case of the pure Lennard-Jones cluster, the critical assumption 
is that a well-defined set of lattice structures contains at least one initial cluster 
configuration which relaxes to the ground state. Works along this line include [1, 13, 
14, 15, 25, 26, 40, 49, 54, 55, 71, 78, 79, 80]. The support for this assumption comes 
primarily from numerical investigations [26, 49]. For the Lennard-Jones cluster, 
the lattice structures consist of an icosahedral core and particular combinations of 
surface lattice points. Given this physical insight into the problem, the approach 
outlined below begins with a discrete optimization algorithm applied to a relatively 
small sample of initial states. The resulting lattice minima are then relaxed as a 
continuous minimization problem. This method can be described at a high level of 
abstraction: 

1.Define S as a set of lattices. 
2. Define a potential function for the discrete problem. 
3. For each element in S, 

Repeat 
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Perform lattice search based discrete optimization 
to identify minimum energy lattice conformations. 

Until stopping criteria satisfied. 
4. Define a potential function for continuous problem. 
5. Perform relaxation (continuous minimization) for 

each minimum energy lattice conformation. 

Suppose we have a cluster of N atoms. We need to choose a base lattice structure 
which has M ( >  N)  lattice points. The lattice search is then equivalent to partit ion 
the M lattice to a set of N filled sites and M - N empty  sites. For each such 
partition, there is a corresponding potential energy value. The goal is to find a 
parti t ion such that  the corresponding potential energy is minimized. During the 
relaxation phase, the atoms (starting at the lattice minimizer) are allowed to go off 
the lattice sites in order to minimize the potential energy function value. 

Lattice based search has lead to great success in the determination of lower- 
energy structures with Lennard-Jones clusters and other related clusters. Northby 
has used this approach to report best-known solutions for Lennard-Jones clusters 
of sizes 13 < N ~ 150. [80] has made improvement on the Northby algorithm and 
found states with lower potentials for clusters with sizes 65, 66, 75, 76, 77. However, 
whether this kind of approach will lead to success in more complicated clusters and 
in protein folding is still not clear at this time. 

3.2. S i m u l a t e d  A n n e a l i n g  a n d  G e n e t i c  A l g o r i t h m s  

Simulated annealing (SA) is a general purpose optimization technique that has been 
proposed by Kirkpatrick et al. [31]. This method is an extension of a Monte Carlo 
method developed by Metropolis et al. [45], to determine the equilibrium states 
of a collection of atoms at any given temperature T. Since the method was first 
proposed in [31, 32], much research has been conducted on its use and properties. 
Besides its applications to other problems, SA has been widely used in the search 
of lower energy configurations of molecular clusters. Wille [74], for example, used 
SA and found a new minimumfor  a Lennard-Jones cluster with 24 atoms. [58] and 
[39] applied Monte Carlo minimization approaches to protein folding. Xue [79] has 
developed a two-level simulated anneMing algorithm that  performed very well for 
large Lennard=Jones clusters. 

Genetic algorithms (GA) are search algorithms based on the mechanics of natural  
selection and naturM genetics. They combine survival of the fittest among string 
structures with a structured yet randomized information exchange to form a search 
algorithm with some of the innovative flair of human search. The first strategy of 
GA is the use of a breeding population in which individuals who are more fit in 
some sense have a higher chance of producing offspring and passing their genet ic  
information onto succeeding generations. The second strategy of GA is the use 
of crossover in which a child's genetic material is a mixture of his/her parents'. 
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The third strategy of GA is that  of mutation, meaning that genetic material is 
occasionally corrupted, leading to individuals who may or may not be more fit than 
they would have been otherwise, but always maintaining a certain level of genetic 
diversity in the population. In reference [30], both SA and GA are implemented 
to compute the global minimizers of the Lennard-Jones cluster. Results show that 
both GA and SA perform progressively better relative to random search as the 
problem size increases, compared to the Nelder-Mead simplex algorithm. It was 
also found that  SA and GA have complimentary strengths which implies that a 
hybrid GA-SA method would be more efficient than either one alone. 

3.3. Spa t i a l  A v e r a g i n g  M e t h o d s  

The NP-complete character of global optimization implies that approximations will 
be needed to obtain solutions in feasible time. The primary question is, "What  ap- 
proximations?" Particularly for molecular conformation problems, it is natural to 
explore the utility of spatial averaging. These methods use a spatially-averaged ob- 
jective function to approximately locate the global minimizer, and then iteratively 
increase accuracy by sequential minimizations with smoothed objective functions 
which have been averaged over smaller and smaller regions of space. The success 
of spatial averaging approaches depends on the validity of what we call the "strong 
spatial-scaling hypothesis": that  the position of the global minimizer varies in a 
continuous manner as the energy (objective) function is progressively smoothed by 
averaging over increasingly large regions of space. Even when the strong hypoth- 
esis does not hold, the"weak spatial-scaling hypothesis"-that  the global minimizer 
varies in a continuous manner except for a bounded number of discontinuities of 
bounded extent-may be valid. The weak condition can also be exploited to orga- 
nize searches although more complicated algorithms will be needed. The validity 
of these hypotheses for specifi c problems is not known and is an interesting topic 
for future examination. 

We can characterize the extent of spatial averaging by parameter A (which may 
be a scalar or tensor, depending on whether averaging is isotropic or anisotropic). 
A natural way to define an averaged energy function /4A,] is by the convolution 
with a sampling function SA, 

/7./A,f (/~) ~ f - l {  / SA(/I~ __ 17~,)I[H(Rt)lHR, ~ (,~) 

where R is a multidimensional vector representing all the coordinates in the molecule. 
One of the simplest and most useful forms for SA is a Gaussian 

SA(R)  -- C(A)  -RA- R 

c (A)  -  -d/2D t-l(A) (3) 

where d is the total dimensionality of R. The function f included in (2) allows for 
non-linear averaging. Two choices motivated by physical considerations are f(x) 
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x and f(x)  = e -~/kBT. These choices correspond respectively to the "diffusion 
equation" and "effective energy" methods which are described below. Wu [77] has 
presented a general discussion of transformations of the form of (2). 

A highly smoothed/ tA, /  (from which all high spatial-frequency components have 
been removed) will in most cases have fewer local minima than the unsmoothed 
("bare") function, so it will be much easier to identify its global minimum. If the 
strong spatial-scaling hypothesis is correct, the position of this minimum can then 
be iteratively tracked by local-minimization as A decreases. As A ~ 0, the position 
will approach the global minimizer of the bare objective function. 

In its basic form, this is simply deformation of the energy surface and can be 
viewed as a homotopy transformation [72]. Unfortunately, it is not very useful in 
the general case because exponential (in the number of atoms) effort is required 
to evaluate the multi-dimensionM integral in (2). However, most of the terms ap- 
pearing in macromolecular energy functions appear as sums of two-body potentials 
like the pair-potential terms in the microcluster potential energy (1). As described 
below, (2) can be approximated for this class of energy function. 

3.3.1. Diffusion Equation Method 

Choosing f (x)  = x and A as a scalar (i.e., a multiple of the identity matrix), 
A 2 < 4t, the averaged energy/~h,f (R) = H(R, t) in (2) is a solution to the diffusion- 
equation 

02 ~---~H(R,t) (4) 
OR 2 H ( R ,  t) = 

with boundary condition 

H(R, O) = H(R) (5) 

H(/~,t)  can be viewed as the solution for the time-dependent dispersion of heat 
through a uniformly conducting medium if t is associated with physical time. Al- 
though t does not have this meaning in the global minimization context, thinking 
of the spatial averaging in this manner is a convenient heuristic. 

The "diffusion equation method" [53] begins by considering H(R,t)  at large 
"time" t such that  

0 H(r, t) _ 0 (6) 
OR 

has only one solution, t is then gradually decreased in steps and (6) is solved at 
each step by local minimization methods to track the position of a minimizer as 
t ---* 0. Hopefully, this will be the global minimizer. 

Piela, Scheraga, Kostrowicki and coworkers have applied this method to some 
standard mathematical test cases and a number of model problems, including mi- 
croclusters of Lennard-Jones atoms, and small peptides with encouraging results. 
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The method found the global minimum when applied to standard test cases for low 
dimensionality (n < 10) (e.g., Goldstein-Price, Griewank, ...) [34]. Performance in 
medium dimensionality model problems was good, but not flawless. For example, 
in the microcluster problem, the lowest energy state was obtained in 9 out of 14 
cases investigated (where the number of atoms ranged from 5 to 55. Even when the 
global minimum was not found, relatively low-energy local minima were identified 
[35]. Performance of the method on small peptides was also tested using a typical 
protein model potential [36]. The method found the global minimum of a simplified 
model of dialanine restricted to 2 degrees of freedom. When tested on a model of 
the pentapeptide Met-enkephalin, with 19 degrees of freedom, the method found 
the general region of the global minimizer, but not the minimizer itself. 

The diffusion-equation is made computationally feasible by approximating the 
interatomic two-body potential energy functions u(Ir~-rj I) by a sum of Gaussians. 
That  is, 

L 

u(r) "~ E ake-bkr2 (7) 
k-=l 

Since integrals of products of Gaussians can be analytically evaluated, (2) with (3) 
and (7) can be reduced to an algebraic sum. However, there are some problems to 
this approach. First, because the Lennard-Jones potential (and a number of other 
potentials of interest) becomes infinite as r ~ 0 ("hard-core" repulsive interaction), 
the integral in (2) diverges. This problem was addressed simply by replacing the 
Lennard-Jones potential with a truncated version that  goes to a finite value as r ~ 0 
[35]. However, the effect of this procedure and sensitivity of the obtained solution 
to the truncation parameter is unknown. It should be possible to overcome these 
problems by replacing H(R) in boundary conditions (5) with the exponentially 
transformed form exp[-flH(R)]. The utility of this procedure is being investigated 
(H. Scheraga, personal communication). 

3.3.2. Effective Energy Methods 

This class of methods [61, 62] is motivated by considering the physical process of 
thermally annealing a molecular structure from high temperature, where it is largely 
disordered, down to a low temperature ~o,  where the conformation fluctuates in a 
narrow range about the global minimizer. At every temperature T, the probability 
density that  the molecular conformation is near conformation 1~ is given by the 
Gibbs/Boltzmann distribution 

e-H(R)/ksT 

p (R) - Z ( T )  (8) 

where kB is Boltzmann's constant and Z(T) is the partition function: 
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Z(T) :-- /e-H(R)/ksTdR. 

At very low temperature PT~o(l~) can be approximated as 

p  o(R) TM  (A[Tto])e (9) 

where the symmetric tensor A(Tlo) parametrizes the moment of inertia of the prob- 
ability density and R ~ is the global minimizer. 

The global minimization problem can be viewed as that of interpolating from (8) 
to (9). Simulated annealing, in which the stochastic Metropolis algorithm is used to 
search the space with probability density pT(R) [31], is one method for doing this; 
but it is too inefficient for the large dimensionality continuous problems posed b y  
molecular structure prediction. A key to good performance is the identification and 
utilization of appropriate sizes for the stochastic jumps. The appropriate size scales 
will depend on T and on the character of the energy landscape in a complicated 
manner. Intuitively, we guess that these scales corresponds to the magnitudes of the 
thermal fluctuations experienced by a physical system at temperature T. Different 
size scales A~(T) may be needed in different regions. 

3.3.3. Packet Annealing 

The packet-annealing method [61] is designed to focus attention on the appropriate 
temperature-dependent size scales in a systematic manner. It begins by approxi- 
mating pT(R) as a sum of Gaussians 

pT(R) fir(R) = (10) 

The parameters A~(T) which govern the widths of the Gaussian packets centered 
at positions R ~ identify the dominant spatial scales in these regions. The conver- 
gence ofpT(R) to pT, o(R) is then traced by following the development as T ---+ T~o of 
the parameters p~, A~, and R ~ that describe the Gaussian "packets". The number 
of Gaussians needed will vary with T, so algorithms for determining when to add 
and eliminate packets are also required. 

The equations that govern the behavior of the packets (i.e., the behavior of pa, 
As, and R ~ in T depend on the "effective energy" /~A~,T(R): 

f e-H(R')/kBTe-(R-R')A-2(R-R')dR I } 
[-IA,T(R) =-- -kBT log { Z(T) (11) 

This transformation is of the form (2) with f = e -*/~BT. (The factor Z(T) is 
included for completeness. However, since it only contributes an R-independent 
constant to /~rA~,T(R), in practice it can be ignored. Note that this definition of 
/~A~,T(R) differs by an additive normalization constant from that  used in [61, 62]). 
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The packet parameters are determined in terms of /4  by the packet annealing 
equations: 

_ "~Au,T (no) 
p~(T) = e kBr (12) 

0 
= 0  (13) 

OR 

02/~A,~,T (R) ]r r 
0 R 2 [n=Rg-- A~ (14) 

The packet annealing procedure begins at a high temperature where the A~ are 
large and where there are only a small number of (or one) solutions to (13) and 
(14). Temperature is then gradually reduced by a stepwise annealing procedure 
while (13) and (14) are solved iteratively by perturbative methods. (13) is similar 
to (6) and fixes R ~ (14) is unique to this method and identifies the dominant 
spatial scale in the region near R ~ In principle, the bifurcation points of (14) 
identify points of packet branching (i.e., where packets are added), but practical 
algorithms to identify these points in high-dimensionality problems have not yet 
been developed. 

As in the diffusion equation method, efficient evaluation of the integral defining 
HA,,T(R) in (11) is a key to practical success. Approximation schemes have been 
used which exploit the fact that H is the sum of two-bo'dy potential terms: this 
suggests approximating the multidimensional integral in (11) by factorizing it into 
the product of computationally feasible two-body integrals [62]. This factorization 
approximation has been used in the practical tests of the method described below, 
although its accuracy is not known. 

A simplified implementation of the packet annealing method has been applied 
to the Lennard-Jones microcluster problem, and results similar to those obtained 
with the diffusion-equation method were obtained (i.e., the global minimum was 
identified in 14 out of 20 tested cases; [61]. Use of the full method, incorporating 
packet branching, might improve performance, but this has not yet been tested. 

3.3.4. Effective Energy Simulated Annealing 

/~A~,T can be used directly in stochastic simulated annealing methods. Since the 
high frequency spatial fluctuations have already been integrated out in (10), it is 
to be expected that stochastic Metropolis sampling with the effective energy will 
converge to the global minimum more rapidly than sampling with the bare energy 
function. Tests of a simple procedure of this type applied to the microcluster 
problem showed that this is the case and that order-of-magnitude improvements in 
efficiency can be obtained on low-dimensionality (number of atoms _< 100) problems 
[10]. Performance degraded with increasing dimensionality, possibly because only 
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isotropic averaging (i.e., A a scalar) was used; the use of anisotropic averaging may 
overcome this difficulty. 

Effective energy simulated annealing has also been adapted into a build-up proce- 
dure which is more efficient for large dimensionality problems. This method, when 
applied to the microcluster problem, found a structure for the 72-atom cluster lower 
than any other found in previous studies [11]. 

3.3.5. Effective Energy and Thermodynamic Free Energy 

The concept of effective energy was previously introduced in the "renormalization 
group" approach to statistical mechanics [75]. /~A.T(R) can be viewed as a par- 
tially integrated form of the partition function in which the high, but not the low, 
spatial frequency components have been integrated out by the convolution with 
the Gaussian. In effective energy methods, each packet represents a metastable 
physical state of the system; that is, a collection (parametrized by R ~ and A~) 
of microscopic conformations (parametrized by R) that equilibrate amongst them- 
selves in times much shorter than those required for transitions between packets. 
It can be shown that A~,T(/~) is an approximation to the thermodynamic free- 
energy of the metastable state corresponding to the set of conformations centered 
around conformation R ~ At a finite temperature, /tA.,T(R ~ depends both on the 
energy of conformation R (the enthalpie contribution) and on the size of the basin 
in the surrounding energy landscape (the entropic contribution). Narrow minima 
will have higher effective energies than wide minima of comparable depth and the 
algorithms will tend to seek out the wider minima. Thus, minimization using the 
effective energy is closely related to minimization of the free energy. For physical 
problems, this is superior to standard minimization of the potential energy (i.e., 
enthalpy) since it is the states of low free energy that are of physical interest. 

3.3.5. Comparison of Diffusion Equation and Effective Energy Methods 

For bounded H(R), H(/~, t) in the diffusion equation method can be viewed as the 
high-temperature limit of the effective energy /tA~,T(R), where A = 4t is a scalar. 
(This can be seen by expanding exp[-H(R')/kBT] in a Taylor's series.) Beyond 
this, the methods differ in that: 1) t (or, equivalently, A) is regarded as a free pa- 
rameter in the diffusion equation method while it is constrained by (14) in effective 
energy methods, 2) anisotropic A are permitted in effective energy methods, and 
3) in principle, the trajectories (in T) of multiple minima (packets) can be tracked 
in effective energy methods while only one minimum is tracked in the diffusion 
equation method. Successful identification of the global minimizer in the diffusion 
equation method requires that the strong spatial scaling hypothesis be valid for 
the problem under consideration. In principle, tracking multiple minima (packets) 
may allow packet annealing methods to find the global minimizer when only the 
weak, but not the strong, spatial scaling hypothesis is valid. Similarly, allowing for 
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anisotropic averaging may be an important advantage in high-dimensionality prob- 
lems where basins-of-attraction are expected to be highly anisotropic. However, the 
price for this increased robustness and flexibility is greater algorithmic complexity; 
a complete packet annealing algorithm which tracks multiple anisotropic packets 
has yet to be developed. 

3.3.7. Schroedinger-Equa~ion Methods 

Other approaches using smoothed energy functions have also been suggested. These 
include the use of solutions of the Schroedinger equation [63] or a mean-field ap- 
proximation to the Schroedinger equation [50]. The practical difficulty with these 
methods is the need to identify good trial wavefunctions and an appropriate reduced 
basis set for problems with large number of degrees of freedom. 

3.4. O the r  Op t imiza t ion  M e thods  

C.D. Maranas and C.A. Floudas [41, 42, 43] have developed very efficient global 
optimization methods for molecular conformation. In [4, 5] general purpose global 
optimization algorithms have been proposed; these algorithms can (without knowl- 
edge on the lattice structure) find minimizers as good as the ones reported by 
Northby for the Lennard-Jones clusters of size in the range n _< 147, with only 
a few exceptions. In addition, these minimizers are almost as good as the ones 
reported in [49]. We refer interested readers to the specific references. 

3.5. Genera l  Pu rpose  Macromolecu la r  S t r u c t u r e  Software Packages 

One significant software packages for molecular dynamics and molecular conforma- 
tion is CHARMM, reported by Brooks, Bruccoleri, Olafson, States, Swaminathan 
and Karplus. CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a 
highly flexible computer program which uses empirical energy functions to model 
macromolecular systems. The program can read or model build structures, energy 
minimization by first- or second-order derivative techniques, perform a normal mode 
or molecular dynamics simulation, and analyze the structural, equilibrium, and dy- 
namic properties determined in these calculations. CHARMM is available on the 
Cray supercomputers at the Minnesota Supercomputer Institute and many other 
sites. Similar programs are available from other sources. These include AMBER 
[73], CEDAR [7], and GROMOS ([66] and references therein). 

3.6. Fast Mult ipole  Algorithm 

In one of the 1987 ACM Distinguished Dissertations [21], Leslie Greengard pre- 
sented an algorithm for the rapid evaluation of the potential and force fields in 



128 PARDALOS, SHALLOWAY AND XUE 

large-scale systems of particles. This algorithm is now called the fast multipole 
algorithm. 

Greengard observes that  an amount of work of the order O(N 2) has tradition- 
ally been required to evaluate all pairwise interactions in a system of N particles, 
unless some approximation or truncation method is used. As a result, large-scale 
simulations have been extremely expensive in some cases, and prohibitive in others. 

Greengard studied the multipole expansion and noticed that  in order to obtain a 
relative precision c (with respect to the total charge), O(] log(c)ln ) amount of work 
is sufficient. 

For example, a usual algorithm for computing the Lennard-Jones potential energy 
function of a cluster of n atoms would require O(n 2) time since there are 2 
pairs in all. However, with the fast multipole algorithm, the same potential energy 
function can be computed in O(n) time. Computational results as well as parallel 
algorithms are reported in [23] This is still a fruitful direction of research. Readers 
are referred to the references [23, 21, 22, 6] 

3.7. P a r a l l e l  A l g o r i t h m s  

Besides conventional sequential algorithms for molecular conformation and pro- 
tein folding, there have been many parallel algorithms developed for vector com- 
puters, SIMD computers and MIMD computers. In [3], an optimal hypercube 
direct N-body solver was implemented on the Connection Machine-2. In [65], par- 
allel approaches to short range molecular dynamics simulation on the Connection 
Machine-2 was reported. [44] reported molecular dynamics simulation of liquids on 
the Connection Machine. [9] presented parallel algorithms on a MIMD architecture. 
[64] presented molecular dynamics algorithms on vector computers. [40, 78, 79] pre- 
sented parallel algorithms for molecular conformation on the Connection Machine-5. 

4. Conc lus ions  

The minimization of nonconvex potential energy functions is a fascinating and ut- 
terly hard problem which is one of the most important problems for interdisciplinary 
research. We have introduced some of the most commonly used potential energy 
functions and discussed a variety of methods that have been developed to tackle 
this minimization problem. It is our belief that important results in this area will be 
obtained in the near future with groups of researchers from different fields working 
together. It has been therefore the goal of this paper to provide interested readers 
a brief introduction to the problems and corresponding literature. 
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